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RADIAL EXPANSION OF A SELF-PINCHED

BEAM WITH DISTRIBUTED ENERGY

I. Introduction
An electron or ion beam can propagate through a gaseous medium in
a self-pinched mode, provided that the conductivity of the medium is
high enough to neutralize the beam space charge, but not so high as to
completely neutralize the beam current. If scattering and energy loss
are neglected, the beam propagates in a static equilibrium, with its
transverse kinetic pressure just balancing the magnetic pinch force.
This condition is equivalent to the statement that the mean trans-
verse beam temperature ?, i.e. the transverse random kinetic energy
per particle, averaged over all beam particles, takes on the Bennett

valuels?

et e nd

T= _3.;&_2 \ (1.1)
where q is the beam particle charge, (;;) the mean axial velocity, and
I° the net current (beam current less return current).

When weak multiple Coulomb scattering by the medium is taken into
account, the beam propagates in a quasi-gtatic equilibrium. As
scattering adds to the transverse random kinetic energy, the beam ex-
pands adiabatically, so as to maintain the pressure balance condition

(1.1). In the case of a paraxial, monoenergetic beam, with axial
Note: Manuscript submitted November 9, 1978.

“‘J: 7
(9 U1 30 076




velocity Bc and particle energy mc®y, Eq. (l.1) becomes
qBec p I
! = = 2.2 1.2)
Lk o lme o :
and it has been shown that the beam density Nn(r,t) takes on a Bennett

profile®

1
At = S TTEEET .3)

and the Bennett radius a(t) expands in accordance with the Nordsieck

35
equation™ ~,

€
4 2 . ;
+ [(ne?(0)] = T (1.5

where EY is the rate of increase of transverse kinetic energy per
particle, due to scattering.

An actual propagating beam may be far from honoenergetic, due
either to initial energy spread produced in accelerating and injecting
the beam, or to energy spread resulting from propagation. The purpose

of this paper is to investigate the structure and expansion rate of a

beam with a distribution of particle energies. The interesting effects
j arise mainly from the dependence of the Coulomb scattering index EY

on energy (i.e. on Yy). For an ultra-relativistic electron beam with

vy 2 100, Ev is given approximately by®

8 n_ 2(2 + 1)q2e
€ =

-1/3 }
s (1,,’.0—)2@., tn 210 2719, (1.58) &

where n, and Ze are the density and charge of scattering nuclei. For

{ons or lower energy electrons*:®, in (210 2-2/%) is replaced by

. " .
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3 n (h 2/%/ucgva), i.e.

hnns 2(2 + 1)q%e

o 1/3
Ey = (hﬂeo)z A im (h 2z /mcﬁwao) (1.5b)

where a, is the Bohr radius. In any event, GY = "1 for relativistic
particles (neglecting both the deviation of B from unity and the possi-
ble weak logarithmic dependence on Y¥). Thus one expects low energy
particles to spread to the outside of the pinched beam and expand more
rapidly. It is by no means obvious a priori how to average over Y to
arrive at a mean expansion rate for the beam as a whole, or even if
such a rate is well defined.

In the rest of this introduction, we shall summarize the main
assumptions and results of the paper. Our assumptions are similar to

3=5

those of previous treatments y Viz:

(1) Paraxial beam, i.e. transverse velocities small compared to

the axial velocity Bc. In conventional relativistic beam terminology,
this means low met v/v = I (1.7 X 10* By amsp), where I, is the pet
current characterizing the pinch force.

(ii) Azimuthal symmetry.

(1ii) No external magnetic field.

(iv) Beam subject to small-angle multiple elastic scattering by
the medium, but collisions between beam particles are neglected
(usually a very well satisfied assumption). Thus there is no reason
to expect different energy components of the beam to be in overall
thermodynamic equilibrium at a common temperature.

(v) An initial energy spread is assumed, but the energy of any
particular beam particle is assumed constant in time. Most of our

results can easily be modified to include deterministic energy

3




losses, e.g. due to multiple inelastic Coulomb collisions, or to self-
generated inductive electric fields that drive return currents in the
resistive medium (known as Ohmic losses). In an ultra-relativistic
electron beam (Y 2 100), bremsstrahlung emission becomes a dominant
energy loss process, and also leads to a rapid spreading of the energy
distribution, which is called "straggling". The mathematical complex-

ities of treating straggling self-consistently with radial beam expan-

sion are not addressed in this paper, but qualitative insights into
this self-consistent problem can be obtained by using an initial energy
distribution that is appropriate for a straggled beam.

(vi) Uniform fractional neutralization of beam space charge and
current, i.e. if J (r,t)Bc and J, (r,t) are the beam charge and
current density, then it is assumed that a charge density - akJ5(r,t)/Bc
and a current density - aMJb(r,t) occur in the medium, where 0 and

aM are constants. Typically charge neutralization is complete, at =1

(except at the beam head in a neutral gas), while current neutraliza-

tion is partial, 0 < o < 1. |

(vii) Quasi-static beam equilibrium, i.e. radial beam expansion

slow compared to individual particle oscillations in the pinch field.
(viii) Isotropic and isothermal velocity distributions, for beam
particles with a particular value of v, are assumed in deriving fluid

equations from the Boltzmann equation.

Our principal results are as follows. In Sec. IIA we derive a
set of fluid equations for the beam, and in Sec. IIB we find an exact

solution of these equations, provided that the beam energy spread is

R ——————————
-
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small enough to satisfy
E?GV <2, (1.6a)
¥ ' ; i.e. approximately,
| . YYI>3 (1.6b) i
‘ for all beam particles, where a bar indicates average over yv. In this

§ case, the radial profile of particles with energy Y takes the form

ny(r,t) = (Ny/ma®)la(e/ae)1¥ Sy (1.78)
‘ ~ ( /fraa)[G(r/a(t))'l"V—'r (1.7b)
¢ NV v : ’

PR e s

where a(t) is a characteristic radius for the whole beam, G(r/a(t)) is
a Y ~independent function with G(0) = 1, the av(t) are characteristic

radii for different values of vy, defined by

———————

e s A AP

ma 2(t)n, (0,t) = 5 drem, (r,t) =N, , (1.8)

and NY is the distribution over ¥, normalized to unity. The ratio

aY(t)/ayl(t) is time-independent, for any values of y and ¥ ﬁ and all

of the ‘V’ as well as a, expand as

% z’l 12 = %B’ (1.9)

with TB given by Eq. (1.2). The beam thus expands in a completely
self-similar fashion. Numerical solutions for the function G(r/a) are

found; if the condition (1.6) is well satisfied, G is close to the

Bennett distribution.




In Sec. IIC, exact solutions of the Boltzmann equation are found
for high v particles, which are localized near the beam axis, where the
pinch force is harmonic. The harmonic form of the pinch force implies
that ny(r) is Gaussian.

In Sec. IIIA a different approach is used to derive envelope
equations for the aY from the single particle equations of motion. In
Sec. IIIB, these equations are used to show that low-Y particles which
violate Eq. (1.6) (typically such particles would constitute a low-
amplitude tail of the energy.distribution NV at low vY) expand,
asymptotically in time, at an exponential rate faster than that of the

beam as a whole,

€
4 2 wieiain
e nal® = 5T, - (1.10)

Thus, given enough time, these particles "evaporate" from the beam,
leaving behind a reduced-current beam that expands completely self-
similarly (if no further straggling occurs).

In Sec. IV, we derive approximate models that specify the time
dependence of the ‘V(t)' given any initial conditions. We examine the
approach to the completely self-similar solution if (1.6) is satisfied,
as well as the approach to the asymptotic solution (1.10) for particles
that violate (1.6). Numerical solutions are given for some particular
cases., We find that the approach to the time-asymptotic state takes
a time that is typically several times the characteristic time scale
TB/E. Thus transient effects can be important. Equation (1.9) is found

to be reasonably accurate, even during the transient period.




II. Kinetic and Hydrodynamic Treatment
A, Fundamental Equations

We begin our discussion in this section with the Boltzmann

equation for the transverse dynamics of a self-pinched beam propagating

in a gas,
df df df € 33%f
- . 2 _¢
—b—:f-&-vr 5 :wB Fy = ;33;2! (@.1)

T
where fy(r‘x,t) is the beam distribution over radial position r, trans-
verse velocity v, and relativistic energy mc?Y. Azimuthal symmetry is
assumed throughout. The right hand side of (2.1) has the form of a
velocity space diffusion, due to the effect of multiple small-angle
Coulomb scattering of beam particles off gas atoms,with the quantity
GY given by Eq. (1.5). The distribution fv(r&!,t) is normalized so

that
n (r,t) = [ d®vf (r,v,t) (2.2)

is the spatial distribution of beam particles with energy mc2y (per

unit v),
=
N ™ dr2rrn (r,t) 2.3)

is the distribution of beam particles over Y, assumed in this paper

to be time independent, and

r A
faw, =1, (2.4)
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We also define a spatial distribution for the whole beam

n(r,t) = ": dYnY(r,t:). @.5)

The magnetic self-pinch force (as well as any electrostatic force due
to unneutralized beam space charge) is characterized by the betatron
frequency wB(r,t), defined by
qBep I(r,t)
wez(r.t) = T:wr—”’_ . (2.6)
where I(r,t) is the effective net current flowing within radius r,

defined by

I(r,e) = [(1 -0 - B™ (1 - )] L (x,1),

2.7
= (1-a) I (r,t)
where
L (r,t) = 1, (=,t) f:’drenrn(r,c) (2.8)
is the beam current within radius r, and we define also
Io =2I(r—= =, t). (2.9)

Since collisions between beam particies are neglected, different Y
components of the beam will not come into mutual thermal equilibrium;
these different components are, however, coupled through the nonlinear
term in (2.1) involving the pinch wez.

By taking velocity moments of Eq. (2.1) (and assuming

isotropy), we arrive at the hydrodynamic equations,




[ ——
= *E B ony)en (2.10)
t r % C i AR .
$ v o) dP
£ S SN ) T 2 B
: my Nnv ( Be + VY == ) my wB anY o ~ 2.11)
| biY+l—°-(rPV)+F-Y—°-(rV)+l°—( ) = € Nn 2.12)
E dr r dr Yy r Or ¥ r dr IQV TR N &
where Vy, PV and gY are the flow velocity, pressure, and heat flow for
¢ ~ particles with a given v, defined by
v (r,0) 2 [ & vy £ (r,v,0)/n(r,¢) (2.13a)
| P (r,t) = & v} my [y - V(r,0)]2N, (r,v,0) (2.13b)
| |
4 : Q(r,t) = [ & v av (v - 3y - VNE, (r,3,¢). (2.13c)

N is the total number of beam particles per unit length, and we also

define a temperature TY(r,t) by
NT (r,t) = Pv(r.t)/ny(r,t) (2.13d)
Following previous treatments of beam expansiona, we assume

that Tv(r,t) = Tv(t) is spatially uniform (i.e. the beam particles

with any given Y are isothermal), and look for similarity solutions

of the form

a SEL eez b ofiamed :
a0 = Loy § (ay(t)) .15)
Y

It follows from Eqs. (2.10) and (2.15) that the radial expansion is

uniform, i.e.




a (t)

v (5,0) = .—:7:—) r,

and Eqs. (2.11) and (2.12) reduce to the following form:

. > = ﬁy(t) .

Ty(t) ym nY(r,t) + mWy (r,t)rnv(r.t) = -uwnv(r.t)r :v(—t_) » (2.16)
a (t)

L = o K

‘rv(t) + 2'ry(:) —L_‘v(:) GY 0. @.17)

We consider only the case of quasi-static equilibrium, in
which wB‘l is short compared to the scattering time scale '1‘Y /€., flow
velocities are small compared to internal velocities, and the right
hand side of Eq. (2.16) can be neglected.* The hydrodynamic equations

then reduce to

T, (0 & 8,(5,0) + ayw 25, 0)% n(x,8) =0, (2.18)
. a_(t)
'l'y(l:) + QTY(t) -J_ay(t) - GY =0, (2.19)

with wez(r,t) coupled to the a, through Eq. (2.6), and subject to the
boundary condition (2.3). Equation (2.18) is simply transverse
pressure balance, while Eq. (2.19) is the adiabatic expansion law,

with the second term being PdV work and the third term the rate of

* Two comments are appropriate here. For r far outside the main beam,
wg = 0, and for those few electrons that scatter out to this region,
t?m dynamics is dominated by scattering rather than by the pinch
force. Also, in dropping the right hand side of (2.16), we are also
neglecting radial oscillations of a,, (sausage mode) which occur if the
beam is injected out of dynamic oquzlibriun.

10
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energy input to the transverse plane, due to scattering.
Equations (2.18) and (2.19) have been solved in closed form

for the special case of a monoenergetic beam®, with the result

T=T sqacu°l° (2.20)
il Dot o y
-2
1 2
n(r,t) = maZ(t) (1 + W) % (2.21)
L%g=3t (2.22)
dt 'rB 5

Equation (2.20) is the well known Bennett pinch conditionl’a, Eq.
(2.21) is the Bennett profile, while (2.22) is the Nordsieck equa-
tion. This simple solution (2.21), (2.22) is possible in the mono-
energetic case only because the problem is not complicated by the
coupling of different values of Y. In the general case, it can still
be shown® directly from the hydrodynamic equations (2.18) and (2.19)

that the Bennett condition holds for an averaged ?,
T=[dwWT(e) =Ty, (2.23)

but there is no simple, general way to calculate the temperature TY
of the separate Y components, i.e. the total internal energy is fixed
by pressure balance with the magnetic pinch force, but energy can be

apportioned among the various vy components in a way that depends on

the detailed evolution.

B. Completely Self-Similar Expansion

In this section, we demonstrate that, provided ti: energy

distribution NY satisfies a condition that will be specified, Eqs.

11




(2.18) and (2.19) have solutions that correspond to completely self-

similar beam expansion, i.e. the profiles nY(r,t) take the form

nY(r,t) - ny(r/a(t)), (2.24)

where a is a Y-independent radius that characterizes the beam as a

whole, and the temperatures T‘V remain constant,
Equation (2.19) then reduces to

T —=—/0{n 32 =€ 4 (2.26)

T, mB e € o @.27)

Equation (2.26) can thus be rewritten as

e,
anat = % (2.28)

; where 'rB is the Bennett relation, Eq. (1.2), and € is the average over

Y of Gy, given by Eq. (1.5). Equation (2.28) is a generalized
Nordsieck equation that follows exactly from the hydrodynamic equa-
tions (2.18) and (2.19) and the assumptions (2.24) and (2.25).

To solve for the density profiles nv(?/a), we first rewrite

Eq. (2.18) in the form

T xdn
X = . pyr?w? o - I(x)
a, (M myewg (x) = bty gl 2.29)

e




f
where x is the dimensionless variable r/a, and we make use of Eqs.
! (2.6) and (1.2). We note that the right hand side of (2.29) is inde-
pendent of Y, Therefore it must be possible to define a function G(x)
such that
— T dn
38 & X X,
G dx n, dx (2.30)
g We immediately obtain the universal form
|
; -— —
'; 0 (%) = CJ:G(x)]T/TY = CV[G(x)]G/GY ; (2.31)
g
I H Since Eq. (2.30) only specifies G to within a multiplicative constant, ‘
| |
i , we choose to require ‘
| g |
g 6O) = 1; @.32)
i |
|
! Eq. (2.31) may then be rewritten as {
| = /e |
0 ) = =% (e 1¥Cy . @.33)
Y T
Next we rewrite Eqs. (2.29) and (2.30) in the form -
x dG I(x)
. E a; = <4 1 ’ (2‘3“')
o
and write a differential form connecting I(x) to G(x),
14 I(x) 2 2 K. €/€
| o Tuioi s [ awm (x) =2 i:z dw [G(x)]™ Ty (2.35)
L
{
b
"’ i 13
,,,,*{:.




Integrating (2.33) over x yields an equation for the ay,

2

==2["axx /Sy . (2.36)

The coupled equations (3.34) - (3.36), with the boundary conditions
(3.32) and

G'¢0) =0 (2.37)

(which is equivalent to I(x)= x2 for x = 0], specify G and the a, (up
to a scale factor in the radius), given any energy distribution NY'
For a monotonic energy distribution, NV = N&(V-I/Y—'r), the Bennett
profile is a solution of these equations; in more general cases,
numerical solution is required. Before presenting some numerical
solutions, we discuss some general properties of the solutions.

The procedure just described is self-consistent if it is
possible to normalize the resulting ny(r), i.e. to satisfy Eq. (2.36).

€/€

This requires that [G(x)] ' v = 0 faster than x~2, for large x. Now

according to Eq. (2.34),

G(x)= x"%, for x = =, @.k2)
and thus the results are self-consistent if

e YT v>} (2.43)

for all v. If (2.43) is not satisfied, there is no completely self-
similar solution, i.e. the conditions (2.24) and (2.25) cannot be

imposed.

14
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Equation (2.33) in itself gives considerable insight into
> the nature of the solution, and what happens when the assumption of
completely self-similar expansion breaks down. Consider first the

case Y {(y"!) > 1, For r << a, G must have the form

G(r/a) # 1 - t2/r°2, (2.44) ?
} and thus
ny(t) ~ ro'a exp ( - f} L ) (2.45)

for v {y"1) >> 1. Thus high v particles are tightly confined near the

beam axis, in a Gaussian profile, whose width aY scales as V’l/a. For ! |

yYyl=1,

e an—

& 2
ny(r) = (NY/!ITay )G(r/a) (2.46)

falls off as r~* at large r, like the Bennett profile; in fact the
numerical solutions indicate that G is close to the Bennett profile,
if the condition (2.43) for the existence of a completely self-similar
solution is well satisfied. For vy (vy~1) - &, ayla - @, because the
profile nv(r) sprouts a long wing at large r, which cannot be normal- !

ized. This is indicative that particles with Y Y T < # would even-

PSS

tually leak into the wing, and spread to r/a = ®; i.e. such particles

would expand at a rate faster than the beam as a whole, making a
completely self-similar solution impossible. One might expect, how-
ever, that the remaining beam would expand self-similarly, after all

of the low Y particles have "evaporated" to large r.

15
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To perform the numerical solution of Eqs. (2.35) and (2.36),

we first discretize the energy distribution NY’

j
s 181 N, 8(Y-v,). @.47)

We then start with an initial guess for the a, and solve (2.34) and
(2.35), which are now reduced to a coupled set of ordinary differen-
tial equations with boundary conditions (2.32) and (2.37), by the Runge-
Kutta method. We then use (2.36) to evaluate new values of the a_,

Y
and iterate this procedure until convergence occurs. It is convenient

to choose the values of a, for a Bennett profile G as the initial
guesses, i.e.

©O)\2
il ast e o = @.48)
a o a+ x2)2€/€Y 2€/€Y-1 .

This procedure usually leads to rapid convergence. In fact, the final
G(x) is quite close to the Bennett shape, unless the N‘Y are such as to

be close to violating the requirement (2.43)., This is not surprising,

since G(x) is constrained to fall off as x~* at x = =,

The form of G(x) is exhibited in Fig. 1, for four different
two-level (j = 2) energy distributions, summarized as cases 2-5 of
Table 1. Several other features of the results are shown in Fig. 2-4.
Figure 2 shows the ratio of radii, 11/12, as a function of YI/ Y and
Nl (compared to the results of two approximate models discussed in

Sec. III), Figure 3 shows profiles of nl(t) and nz(r), while Fig. &

shows profiles of the total beam, n(r) = nl(r) + nz(r).

16
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To summarize the results of this section, we have produced
an exact, completely self-similar solution to the radial beam dynamics,

which holds if and only if the condition (2.43) is satisfied. We have

s

not yet considered the time evolution that follows from an arbitrary

initial specification of ny(r), nor the evolution that occurs if the

energy spectrum Ny is such as to violate (2.43) for some values of V.
In Secs. III and IV, we shall use approximate models [envelope equa-~
tions based on assumed forms of nv(r)] to attack these problems. We
conclude there that the beam, with arbitrary initial conditions, does

evolve toward the completely self-similar solution if (2.43) is

satisfied.

17




C. Harmonic Magnetic Pinch and Gaussian Profiles

In this section, we consider the consequences of assuming
that the magnetic pinch force -mw)g(r,t)z is simple harmonic, i.e.
that wﬂz(r,t) is independent of r. This assumption is well satisfied

near the beam axis, where the current density becomes uniform spa-

tially. We shall find exact solutions of the Boltzmann equation, and

demonstrate explicitly that the distribution fy(r,:.t) is isotropic 4
and isothermal; these properties were only assumed in deriving the
hydrodynamic equations of Sec. IIA.

For an r-independent ws(t), a function of the form
£,(r,3,) = M(t)exp[ Bmwirs (t) Bmwip (£)-mwov 18 (8)] (2.49)

is an exact solution of the Boltzmann equation (2,1), provided that

the coefficients Br’sv' and Bc satisfy the ordinary differential

equations,
2 Bv-wBBC-+ e\Pra e .
28 o . 25 2 3
‘*"‘"s By = mugugB + € wg28 2 + g8 = 0, (2.50b)
R (2.50¢)
wgB, + GgB, - wg?B_ + zerssvsc + """szsv =0,
and M(t) is given by the normalization,
N, =[ deeme [ @2 v £ (r,3,0). (2.504)

Given any set of initial conditions Br(O),av(O), BC(O), the solution
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is determined thereafter by Eqs. (2.50). However the initial values

must satisfy the constraint -
B,.(0)B_(0) > B _2(0), 2.51)

in order to permit the normalization of Eq. (2.50d). Any superposition
of such solutions is also a solution, since the Boltzmann equation with
a prescribed pinch force is linear in f(r!x,t).

The spatial profile determined by these solutions is

Gaussian,
n, (r,t) ~ exp(-ralavz(t)), (2.52)
where
a2(®) = {#mgle (08, () - 8 2(e)]} -2 (2.5%)

The temperature '1'Y is spatially uniform,
Tv(t) = I/Bv(t), (2.54)

and the distribution over internal velocity w is isotropic, justifying
the definition of a pressure and the neglect of heat flux., Thus

these solutions satisfy all of the assumptions made in deriving the
hydrodynamic equations in Sec. IIIA, Using (2.54) in the pressure

balance equation (2.18), we find that TY is related to w through

P e
Ty(t) = iumﬁ a, (t). (2.55)




The assumption made in this section, that w_ is independent

B
of r, is only valid for the high Y beam particles, which are localized
well within the characteristic beam radius a(t). It is tempting to

try to develop an approximate theory by extending this assumption to
all beam particles, e.g. by choosing an "average" spatially independent

ws by requiring

UWWB a® = (mng(r)rz) . (2.56)

With this prescription, Eq. (3.18) reduces to

daaade
238 - ;%r I a® = 51 a2, (2.57)

Averaging (2.57) over v yields a generalized Nordsieck equationm,

d_d:“”“z "i:g; , (2.58)

and using (2.58) in (2.57) gives an expression for the time dependence

of av(t), given arbitrary initial values avab),

r € - € -
ay‘?(t) = Laya(o) - -EJ 32(0)] exp (2%'3)* zy a2(0)exp(.§—:). (2.59)

Equation (2,58) is indeed the correct generalized Nordsieck
equation, derived exactly in Sec. IIB [if Eq. (2.43) is satisfied].
Equation (2.59), however, éoints up the deficiencies of this approxi~
mate model. The first term of (2.59) is a transient, arising out of
the initial conditions. The second term, which dominates for

t >> TB/E, represents a completely self-similar beam expansion, with
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all Y components expanding at the same exponential rate and such that

2 € /
-2t X, (2.60)

7 GY,

]

»
<

Both Eq. (2.60) and the time scale for the decay of transients, Eq.
(2.59), are essentially correct for particles with ¥ YI>> 1, But

as we have seen in Sec. IIB, such a self-similar expansion can only
hold for values of Y that satisfy Eq. (2.43). The model thus fails

for low Y particles; it is the very fact that the pinch force is not
harmonic, but rather falls off for large r, that allows these particles
to expand faster than the main beam. To calculate the time dependence
of aY(t) for all v, we need a more sophisticated envelope equation
(i.e. equation for ay) that models the pinch force more realistically.

Approximate models of this type are developed in Secs. III and IV,

T —




III. Envelope Equations

A, Derivation and General Remarks

In Sec. II, we found an exact solur‘on of the hydrodynamic
equations for the beam profiles ny(r,t) and for the radial expansion
rate. However the solution applied only when a restriction on the
breadth of the energy distribution, Eq. (2.43), was satisfied. Further-
more, the solution applied only when the initial conditions happened
to coincide with the specified form. In order to find nY(r,t) with
complete generality, it would be necessary to solve the general initial
value problem of the hydrodynamic equations (2.18) and (2.19). We do
not undertake to do that in this paper. Instead, we reduce the diffi-
culty of the problem by going to a lower level of description. 1In
this section, we derive envelope equations, i.e. equations determining
the evolution of the characteristic radii aY for beam particles with a
given value of Y. In order to specify the coefficients in the envelope
equations, it w%}l be necessary to assume specific functional forms for
the nv(r,t). Thus we obtain approximate envelope equations. However
we are able to benchmark these approximate models against the exact
solutions of Sec. IIB, in the regime where those solutions are valid.
We are also able to solve the initial value problem for the envelope
equations more generally. The results strongly indicate that the
exact, completely self-similar solution of Sec. IIB is the time-
asymptotic limit for any initial conditions, provided that the con-
dition (2.43) is satisfied. Solutions are also found when (@.43) is
not satisfied. In these cases, the low-v particles expand more

rapidly than the main beam,
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Our starting point here is the single-particle equation of

motion, and our derivation follows that of Lee and Cooper? for a mono- |
energetic beam. Under the assumptions (i-vi) of Sec. I, the equation %

of motion of a beam particle in the transverse plane is

‘i + msz(r,tls = §F/my, G.1)

where the betatron frequency wB is defined in Eq. (2.6), and 8F is the

rapidly fluctuating stockastic force associated with Coulomb scatter-

ing off atoms in the medium. By taking the product of Eq. (3.1) with !
either‘s or‘i, and averaging locally over the transverse velocities'g |
of beam particles with a given value of ¥y located in an annular volume
element between and r and r + dr (denoted by <...>i)’ we arrive at the

two equations

2¢€

dv= dr? Wi

e R R (3.2)
2 i 2 -

% < dd_:r:' P =W w*r* = 0, (3.3)

where V(r,t) is the mean or fluid velocity at r,

d d D
dt % ot e dr °?

A ABAASA b . % - 1045 e N s

and €,v is the rate of energy transfer to transverse motion due to
scattering, given by Eq. (1.5). Eliminating V from Eqs. (3.2) and

(3.3), we arrive at

a2 o 5,0 By o
RO e * Cgger g +o () = AR
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Next we make the assumption that the beam is in quasi-static equili-

brium, i.e. that

n_2
( —d l‘n_ >i' o~ n << wanrz,
dt t
mac

(3.5)

where tmac is a time characterizing macroscopic beam radial motion. This
assumption means essentially that the macroscopic transverse beam dynam-
ics is determined to lowest order by a balance between the transverse
kinetic pressure and the magnetic pinch, with the scattering term on

the right hand side of (3.4) leading to adiabatic beam expansion at a
rate slow compared to individual particle oscillations. The first

term on the left hand side of (3.4) is thus negligible®, and we com-

plete the derivation by averaging also over position r. We obtain

d 2 2dl‘2 2_61
Eiwi ) rdelne) w o, (3.6)

where (***) henceforth indicates an average over (both position and

* This assumption always fails for r large enough, since the first
term in (3.4) = r®, while the other terms ~ constant as r = ®, This
is indicative that the pinch force becomes weak for beam particles
that are far enough outside the main beam, and the dynamics of these
particles is dominated by scattering, rather than by an equilibrium
between pressure and pinch force. Thus the self-similar profiles used
later are incorrect at large r ~- the beam profile must approach a
Gaussian shape in this region (but only at very late times). Never-
theless, the first term in (3.4) can be dropped, without significantly
affecting the results in the region inside or fairly near the main
beam. Once this is done, profiles such as the Bennett profile are
admissable, even though they would cause the first term to diverge,
because they fall off too slowly at r = =,

L .
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velocity of) all beam particles with energy v, i.e. for any function

g(r,t),
‘ { g(r,t) ) = NV'l f: dr2nrnY(r,t)g(r,t). G.7)

To proceed further, we shall assume that the functions

nv(r,t) are of the form

T
n‘l(r’t) - nY (ay(t)) ’ (308)

i.e. that the beam particles with any single value of Y expand self-

similarly. This is a much weaker assumption than the assumption made
in Sec. IIB that the whole beam expands self-similarly, and we expect
(3.8) to have a much broader realm of validity (e.g. when low ¥
particles expand faster than the main beam components). The charac-

teristic beam radii aY(t) are conveniently defined by*
"~ =g 2
N, = [ dremm (r,t) = ma 2(t)n,(0,¢), (3.9)

and it will also be convenient later to define a characteristic radius

a for the whole beam analogously,

1= f: dr2ren(r,t) = ma®(t)n(0,t), (3.10)

where n(r,t) is defined in Eq. (2.5). It follows from Eq. (3.8) that

¢ str,0) 1 )= (st faz, (3.11)

T Y

* As noted previously, it is not always possible to define a_ as a
root -mean-square radius,
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for any function g(r,t). Thus Eq. (3.6) reduces to

d 2.2 2,2y d 2 2_61
E(WB )+<WB )Eg%av=m . (3.12)

We also note, from Eqs. (2.6)-- (2.9), and (2.20), that

myw, r® = b1y J7 ar'ane’n(e’ o), (3.13)

and thus rewrite Eq. (3.12) in the two equivalent forms

€
4 4a e
r Dy(c) + Dy(c) P [on afm] = a1, (3.1k4a)
or
€
4 2 i Sl
D () a:”"'["v(t)‘v (t)] 5T, ° (3.1Lb)
where
- -l rr ’ ’ ?
D (t) =Nt [T dr2mm, (r/a (£)) [7 dr'zmr’n(x’,e) (3.158)

=N [T drenen, (r/a, (e)) [T 2mx’ [av n, (2 a0 (6)). (3.15b)

Equation (3.14) is an envelope equation determining the evolution of
av(t), once the coefficients Dv(t) are determined.
B, Small ¥ and Large Y Limits
Before making further assumptions to determine the coeffi-
cients Dv(t), we consider the limits of small ¥ and large Y. As in
Sec. IIB, small Y will mean 2y ¥ T < 1, while large Y will mean
YYI>> 1, We expect, as indicated in Sec. II, that particles with

large Y are confined to radii well inside a, while those with small




Y spread to well outside a (after an initial transient period). Thus,

for small v,
DY(t) o 5 (3.16a)

and Eq. (3.14%) reduces to a generalized Nordsieck equation

€

4 ¥ o
gchaj= T (3.16b)

for small-Yy particles. We note that the expansion is exponential, at
a rate inversely proportional (through TB) to the total net current
Io' but inversely proportional (through Ey) to the particular Y of the
particles. Comparing with Eq. (2.28), we expect the beam as a whole to
expand roughly exponentially at a rate ~ EYTB. Thus low=-Y particles,
i.e. those with GY >2€or Y YIS %, expand more rapidly, and the
ratio aY(t)/a(t) increases without limit.

Next we consider the limit of large Y. Since these particles

are confined near the beam axis, we can take
n(r,t) ¥ 1/ma3(t), G.17)

i.e. the pinch force is simple harmonic in this region. As shcwn in

Sec. IIC, this implies that

N
rz
ny(r) - “'ya(t) exp (' ayZ(t) ) H (3018)
hence
(P ) = l‘?. (3.19)
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We do not need to use Eq. (3.18) here, but we do use the fact that

( r? ) is finite, Eq. (3.19). Using (3.17) in (3.15a), we then find
ENOR af(t)/az(t). (3.20)

Equation (3.14) then has a solution with

' a_2(t) €
-} = Y. (3.21)
a“ (t) 4 2
2'!.‘B at on a®

i.e. the large-Y beam components expand at essentially the same rate
as the main beam, but their characteristic radii scale as EYl/a, i.e.
as Y2, .
C. Approximate Envelope Equation Model

In order to evaluate the coefficients DY(c) in the envelope
equation (3.14), without knowing the general form of the profiles
nY(r), we shall consider some ad hoc assumed forms for nv(r). The
validity of these assumptions can be tested, to some extent, by com-

parison with the exact, completely self-similar solution of Sec. IIB;

which hold when condition (2.43) is satisfied.
We consider three very different self-similar forms

ny(r/av(t )):

N
2
(Case i) ny(r,:) = 1-7;2{3 exp (- ‘—Yzm), (3.22a)
-2
N 2
Case 11) n,(r,t) -;T-.?E-)- (1 +‘—vzm) . (.22b)
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N -l-r 2(t)/a 3(t)
(Case 111) n(r,t) =T?V§(t—) (1 + r—::m) o N (3.22¢)

Case (i) is the Gaussian profile, correct for large Y. Case (ii) is

the Bennett profile, correct for a mono-energetic beam®. Case (iii)
was chosen by analogy with the exact self-similar solution (2.33) with
the approximation G(x) = (1 + r2/r°2)'2, the Bennett form. The expo-
nent used in Eq. (3.22c) is required to satisfy the normalization (2.3).
The parameter ro(t) is a Y-independent radius, which is left arbitrary;

the resulting envelope equations turn out to be independent of the

choice of ro(t).
Most remarkably, all three cases share the property that

a2

D(t) =[ dy' N, a—z—v——;-z ! (3.23)
The generality of this results tempts one to speculate that it is a
general consequence of all profiles of the form nY(r/aY(t). The
reader is warned that this is not so.
Using (3.23) is (3.14), we obtain an integral-differential g

equation for av:

2 da 2 €
4 ray' N X + w fay’ N L X 2ka
[ dt v aZ+as2 " vV aZ+a 2ot » .24
Y Y Y Y B
|
; or - y az d : j ‘4 —el ?
Tavin . -:—Y——z‘v o acinl av'ng —z—y—z‘y o =2T13 (3.24b) |

i We look first for solutions of (3.24) that are completely

self-similar, i.e. such that the ratio aY/hY' is constant in time, or
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equivalently
2 ma?xdma®, for all v (3.25)
dt v dt ' : i

Equation (3.24) then reduces to

a? €
P gy’ $ig o N -
o dY N ;zdh_f acna oy (3.26) 5

Multiplying by N‘( and integrating, we find

2 2
dona® p &y __dma?, ' i(ahyz)
. | dYNdeV'NY,ayzhyf— ac - JavY N [y NY,—a—v!-;vz'-

P
=t hna e

Thus we arrive at the same generalized Nordsieck equation derived

exactly in Sec. IIB,

£

dt dt y T. °* 3.27)

w

which helps to establish our confidence in the assumptions (3.22) that
led to Eq. (3.23). Using (3.27) in (3.26), we find

a2 S

—_—r— = X 1
NN ® oy (3.28)

£ ]
J dy Nvl ay 2Y V. .

The integral equation (3.28) determines the relative magnitude of the

various a.. For example, if the energy distribution NY is discretized,

b
N = X N,8(v-v,), (3.29)
Y =1 L i

P,

1
1
f




,.
|
4

S

then Eq. (3.28) becomes a set of j algebraic equations (one of which is

redundant),

j a2 €
T N __2_1___2 s Whael T T ’ (3.30)
k + € =T
k=1 o BT 2 2y, ¥

that determine the j-1 unknowns 32/31, aB/al,...,aj/al. Also, a, is
determined by its initial value and Eq. (3.27).
Since the left hand side of Eq. (3.28) or (3.30) is less

than unity, a necessary condition for the existence of a completely

self-similar solution of Eq. (3.24) is
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-g— ~yyZI>4%, for all v. _ (3.31)
#

We proved in Sec. IIB that condition (3.31) is both necessary and suffi-
cient for-a-completely self-similar exact solution of the hydrodynamic
equations. However, Eq. (3.31) is not sufficient within the framework
of the approximate model, Eq. (3.24). This indicates a defect in the
approximate model, which, we find, agrees well with the exact solution
if (3.31) is well satisfied.

To illustrate this, we consider a two level discrete energy
distribution, j = 2 in Eq. (3.29), as we did in Sec. IIB. Equations

(3.30) can then be solved for azlal, with the result

a =
o B, o St (3.32)
a, -§ *§ -N)) - €T
The condition for the solution to be physical is that a12/a22 be posi-
tive and finite, which requires that
€ = 1
e Yy =l (3.33)

if Y < \é. Comparing with Eq. (3.31), we see that (3.33) is a stronger
requirement. Solutions of Eq. (3.32) have been plotted in Fig. 2, as
well as plots of 31/32 from the exact theory of Sec. IIB. We see that
agreement between the two is good where (3.33) is well satisfied.

This is to be expected, since we showed in Sec. IIB that the exact

N
form of nv(r,t) = ;:12 [G(r/a)]glev is close to one of the approximate
y
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forms, Eq. (3.22c), that leads to the present model. However, near the
region of breakdown of the completely self-similar solution, the value
of al/a2 is evidently sensitive to features of the profile ny(r,t) that
cannot be modeled as in Eq. (3.22c).

We turn next to the general initial value problem for Egs.
(3.24), given arbitrary initial values for a,. When NY is discretized,
as in Eq. (3.29), Eq. (3.24) becomes a set of j coupled ordinary
differential equations in the variables ai(t), 1< i< j, which can be
solved numerically in straightforward ways. We consider again the two-
level discrete distribution in Y, for which the following analytic

solution can be found, after much tedious algebra:

2
251N Fa2 )] a2 (t) a2 (t) °N\ N, &
4t 12— |3 = exp| = (3.34)
aj©0)] |[a30) ay (0)+a5(0) Woous L & :
P Q R
a2(t)/a2(t) aZ(t)/a2(t)+1| |a3(t)/a3(t)-s z
1 2 1 2 - 2 P . 3.35)
a""'_l (o')7a22('o') '321 (0')'/";22—(0)+"1 ;21 ©)/ 322(—0)-8 i 5 ”
where
N, (14N )€
Pl .36
R (3.36)
Q=1+2NN, (3.37)
-€ )2 <€ YE(N. =N_)=
. (e1 62) ('arz!::g+1)+:a(e1 e,‘,)e(n1 N,) 3¢ 2 : Ak
e (61'62)2




s = — (3.39)
€ - 61 + 62

This complicated solution can be shown to have the follow-
ing properties: (i) If condition (3.33) is satisfied, it tends
asymptotically to the completely self-similar solution of Eqs. (3.27)

and (3.32). (ii) If condition (3.33) is not satisfied, then a, (t) and

and a2(t) tend asymptotically toward exponential expansion, but at

different rates, with al(t) expanding faster:

E i
4 2 |
at n 81 = (1 + NQ)TB y (3-1"0‘) j
(N.-N. )€ :
4 DR i Sk i ]
aE RN » A T (3.40b)

(iii) If condition (3.33) is not satisfied, and N, << 1 (so that

1

the beam component with Yy = Y, represents the '"'main beam'), then

2
asymptotically in time a, expands as if only the v = Y2 part of the

I beam were there, 1
;
621:
a;(t) t—".ﬁ exp (TB # (G.41)

while a, expands as discussed in Sec. IIIB, :

g € ¢ o 5
81 (t) E—"‘-: exp '2'Tr'; b 3.42)
(iv) The time scale for the approach to these asymptotic limits is

typically several times the time scale for beam expansion,

TB/-é‘ Thus transient effects remain 1u|pornnt until the beam has

bl




expanded considerably from its initial radius.

All of these features are illustrated in Fig. 5, where the
time evolution of various quantities is shown, for Cases 1, 3, L, and
5 of Table 1. The initial condition al(O) = 32(0) is used for all
cases. Plotted are the characteristic beam radius a(t), in the form

of the ratio of a®(t) to the value
a°2<c) = a2(0) exp (@:/TB) (3.43)

predicted by the Nordsieck equation (2.28) for the completely self- b

similar case, and the ratio al(t)/a2(t). (Also shown are several re-

sults of the model discussed in Sec. D.) It is seen that a3(t) /aoz(t)

is less than unity by a value that ranges from a few percent to ~ 30%,

during a period when a(t) e-folds many times. Thus we conclude that

Eq. (2.28) is quite an accurate representation of overall beam expan-

sion, even during the transient stage, and even for distributions NY

that violate the requirement (2.43) for the existence of a completely

self-similar solution. : t
We note that the definition of a '"characteristic beam radius" E

is to some extent arbitrary for a multi-level distribution NY’ since .

the radial beam profile n(r,t) will have plateaus and wings, and in

general differ from a typical bell-shaped curve. This effect is most

pronounced for the two level distributions discussed here. The defini-

tion of a in Eq. (3.10) essentially reflects the evolution of the on-

axis density Nn(r = 0, t), a quantity of particular interest. Other

definitions of a '""characteristic'" beam radius would exhibit somewhat

s e
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different behavior, e.g. a mean-square radius, defined by
ays“(t) = I N.a 2(t),

would be larger than aoz(t), by a few percent to a few tens of percent, ‘
over the same time scale shown in Fig. 5.
b In general, the model discussed in this section appears to
give reasonable results, except for the time-asymptotic results in the
sensitive regime near the limits of applicability of the completely
self-similar solution. Thus we regard it as a useful model for approx-
imate calculations. In the next section, however, we develop a model
that is further simplified and easily solved, which retains many of the
desirable features.
D. Simpler Envelope Model
In this section, we consider a simpler and more approximate
model, within which it is possible to solve the general initial value
problem for aV(t) in closed form for any distribution Ny (discrete or
continuous). The model gives the exact condition (2.43) for the exis-
tence of a completely self-similar solution, and in many cases agrees §
well with the ratios aY/aY; for the exact, completely self-similar

solution, and with the time evolution found in the last section. We

A B 31

e u—

start by continuing to assume that ny(r/ay) takes one of the forms of
Eqs. (3.22a, b, or c), but we adopt the simpler assumed form for the

total beam density profile,

2
(Case 1) a(r,t) =rr—aé?€)- exp (- :5-(—5) 4 (3.44a)
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(Gake 12) A = s T EEOE GNe)
2 e S 2 :
(Case III) n(r,t) =rﬁé—(T)-(1 + r—é-(t_)) g A £ voa i
o \ ’

rather than by using the self-consistent prescription,

a(r,t) = dy n (r,t). (3.45)

The choices (3.44), particularly (3.4Lka) and (3.44b) are obviously

suggested approximate forms. In all three cases, we have then from |
Eqg. (3-158):

(e s pe-lo |, (3.57)

ay

instead of Eq. (3.23). Substituting in Eq. (3.1k4), av(t) is determined,

in terms of a(t), by the ordinary differential equation,

2

* (=
e TN e TG
+ a*~ dt - Wl E - L (3.48)
Y B
instead of the integral-differential equation (3.24). Letting

yv(t) = ava(t)/az(t). (3.49)

A S A S S

Eq. (3.48) can be put in the form

2
2!: EJ_.JY__. 9—%;2 g:_yL). (3.50)
dt 2TB 1 +yy dt 2 +yv ¢ :

Clearly, a completely self-similar solution, i.e. one with

7




ﬁv = o’ ‘11 V, (3-51)

can occur if and only if

3t on a® = constant, (3.52)
and
2T =
yY - ( g—n %@n az - 1) . (3-53)
V

Since there does not appear to be any obvious way to calculate a
within this simple model (e.g. by setting a equal to some obviously
appropriate average of aY), we appeal to the exact self-similar solu-

tion of Sec. IIB, which gave

ad?”“a’ﬁe;‘- | (3.54)

Using Eq. (3.54) in Eq. (3.53) gives

a2

FS L g S
W E TR T AT ®.55)

Equation (3.55) has the correct qualitative properties of the exact com-
pletely self-similar solution derived in Sec. IIB, i.e.: First, the

solution exists if and only if

€/e,m Y YT >4, forall V. (3.56)
Second,
Ko, ox G/GV -& . (3.57)
38
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Third,

a, = Gvi"v V% for Y Y I>> 1 (3.58)

as shown in Secs. IIC and IIIB. Fourth a, is a monotonically decreasing
function of Vv, in the range of applicability, v YT #. Plots of

Eq. (3.55) for two-level distributions NV' shown in Fig. 2, agree well
with the exact solutions when VY /Y, 2 0.5,but not for v,/v, = 0.25.

The latter is a very severe test. For actual continuous distributions
NV, the beam profile n(r) will have a smoother shape, as assumed in

Eqs. (3.44), and we would expect the model to give accurate results for
Y Equation (3.55) can, of course, also be applied with ease to con-
tinuous or multi-level discrete distributions NV’ for which the exact
solutions become time-consuming and rather unilluminating.

We consider next the solution of Eq. (3.50), with general
initial conditions, in several limits. We note first that, if and only
if Eq. (3.56) holds, the solution to Eq. (3.50), with any initial con-
ditions, asymptotically approaches the completely self-similar solu-
tion, Eq. (3.55). This assures us once again that the latter is the
physically significant solution. If inequality (3.56) is strongly

satisfied and y << 1, Eq. (3.50) reduces to the linear equation

i&-f—*--%y Lma? (3.59)
dt Ty ' 7y dt ¥ ¥

whose general solution is

39




-1
4 . 2 = d 2
dt?/na) exp(i:;ina).

(3.60)

Equation (3.60) reproduces the solution (2.59) found in Sec. IIC. As
a final limiting case, if Eq. (3.56) fails for a particular value of

Y, then Eq. (3.50) shows that yv - @  and moreover that for yv > 1,

€
4 O SR I
acryy ™ lo

’ (3.61)
2TB dt
so that, from definition (3.49),
d (=
—fmaz~4 (3'62)

dt Y 2TB

in agreement with the generalized Nordsieck equation (3.16) derived in
Sec. IIIB for large V.

If (in the spirit of a first iteration), we use Eq. (3.54) in
(3.50), even when the solution is not completely self-similar, then the
general initial value problem (3.50) for yV(C) can be solved in the

closed form,

€ B y::(t) +1 o A["L(t) 1] +1
s e+ ("v(o) 7 SN Yk Any(O) *+1]+1° (3.63)

where

AS -1+ @y YOl (3.64)

The solution (%.63) involves the distribution N, only through E, and

PN v e s -

st . cataded Wadin it




thus can be applied to any form of N . Plots of y,(t), alz(t)laza(t),
and aa(t)/aoz(t) are shown in Fig. 5, for the two-level discrete dis-
tributions of Table 1, Cases 1, 3, 4, 5. We recall that a®(t) and

aoa(t) are as defined in Eqs. (3.10) and (3.43), i.e.

-1
a(c) %5 B ; (3.65)
3, () T ( ¥ )

1. Y2

a,®(t) N y, (€ .
aed(t) g(t) . (3- 6)

We note the excellent quantitative agreement between the results of the
present model and that of Sec. IIIC. It is particularly striking that
even in Case C, Fig. 5b, the asymptotic values of alzlaz2 for the two

models differ, but the time evolution is nonetheless almost identical

for a very long time.
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IV. Conclusions

We have shown that if the energy distribution of a self-pinched,

relativistic beam is such that
E/ey NyYI>E (4.1)

for all beam particles, then the beam expands, under the influence of
scattering by the medium, in a completely self-similar manner after
an initial transient stage. In this case, the expansion was shown to

be at the rate

Al

tna® = TE ’ (%.2)
B

and exact solutions were found for the radial profiles nY(r/a(t)),
such that higher-energy particles are more localized near the beam
axis, Typically Eq. (4.1) is violated if the energy distribution N,
has a low-amplitude tail at small Y, Particles which strongly violate
the inequality (4.1) were shown to expand more rapidly than the main
beam, at a rate that tends asymptotically to

€

. S 4
sy TR (4.3)

Two different approximate envelope equation models, of distinct
levels of sophistication and mathematical complexity, were developed
to determine the evolution of ay(t), the characteristic radius for
particles with energy mc®y. The models were benchmarked against the
exact results, where applicable. The general initial value problem

was studied for each of the envelope models. The most important

k2




conclusions were that a significant time, typically a few times
EYTB, is necessary to approach the asymptotic limits discussed above;

that the generalized Nordsieck equation (4,2) is quite accurate even

during this period, if (4.1) holds; that the expansion rate of a (de-

fined by Eq. (3.10) as a radius that characterizes the beam in the

sense that a® is inversely proportional to the on-axis density] is less
L than or equal to Eq. (4.2), but the disparity becomes large only if
(4.1) is violated and -G.t/'rB 2 2, In general, the nature of the evolu-
tion is that very low energy particles 'evaporate' by rapid radial
expansion, while the main beam expands more or less according to
Eq. (4.2).

The principal assumption made was that the energy of any given
beam particle is constant (although an initial energy spread among

different particles was assumed). It would be straightforward to in-

clude deterministic energy losses in these calculations, but difficult
to include, self-consistently, statistical energy loss mechanisms such
as bremsstrahlung emission, which continuously increase the energy

spread. In general, we expect that the effect of such mechanisms would

be to continuously generate low-energy particles, which evaporate,

thus slowly reducing the effective net current. In addition, the

left hand side of the generalized Nordsieck equations would be modified
in a way discussed by Lee and Cooper*, i.e. (d/dt) Wzava would be re-
placed by (d/dt) WI(V!V?). Otherwise we do not expect that the main
conclusions of this paper would be changed markedly, although a quanti-

tative study of the effects would be quite interesting.

b3




ACKNOWLEDGMENTS

f We are pleased to acknowledge that discussions with Robert
% Biegalski contributed to the evolution of these ideas.

f was supported in part by Naval Surface Weapons Center.

This work




1.

R
-

REFERENCES
W. H. Bennett, Phys. Rev. 45, 890 (193k4),

L. Spitzer, "Physics of Fully Ionized Gases', Second Edition,
Interscience, New York, 1962, p. 109.

E. P. Lee, Phys. Fluids 19, 160 (1976).

E. P. Lee and R. K. Cooper, Particle Accel. 7, 83 (1975).

A, Nordsieck (deceased), unpublished.

J. D. Jackson, "Classical Electrodynamics", Wiley, New York,

1962, Chap. 13,




e

Some two level distributions that are used as examples

calculations,

Table 1
e | N M/ LF-T iv—‘f
1 0.2 0.8 0.25 0.4 kb
2 0.2 0.8 0.5 0.6 1.2
3 0.8 0.2 0.25 0.85 R
L 0.5 0.5 0.5 0.75 1.5
5 0.5 0.5 0.75 0.875 1.167

in our numerical
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Fig. 1 — Plots of the function G(x) for several cases. The uppermost
curve is a Bennett profile, included for comparison. The other curves,
reading down from the top, are G(x) for Cases 5, 2, 4, and 3 of Table 1.
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Fig. 2 — Plots of the ratio of characteristic radii a, /a,, for discrete two-level dis-

tributions over v, according to the completely self-similar solutions. The horizon-
tal axis is the fraction of particles with ¥ = v,, and the ratio v, /v, is a parameter
with the values 0.75, 0.5, and 0.25. The short-dashed curves are the exact solu-
tions of Sec. IIB, the solid curves are the approximate results of Eq. (3.32), and
the long-dashed curves are the approximate results of Eq. (3.55). For v{/v3 =
0.75, the three curves are virtually indistinguishable.
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ny(x), according to the exact self-similar solution, for four cases listed in
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